A Spatially Explicit Population Viability Model using GIS

M.R. Lethbridge®, H.P. Possingham” and A.J. Tyre*

“ Division of Information Technology, Engineering & the Environment, The University of South Australia,
Adelaide 5000, SOUTH AUSTRALIA. (mark.lethbridge @flinders.edu.au)
b Hugh P. Possingham, Departments of Zoology & Entomology & Mathematics, The University of
Queensland, St Lucia 4072, QLD, AUSTRALIA
¢ Andrew J. Tyre, Department of Zoology & Entomology, The University of Queensland, St Lucia 4072, QLD,
AUSTRALIA

Abstract: Population Viability Analysis (PVA) is a Monte Carlo simulation method for estimating the
probability of extinction of threatened species. Geographical Information Systems (GIS) have long been used
as a spatial decision support tool. More recently there has been particular interest in the integration of GIS
with simulation modelling. Integrating PVA with GIS will enable us to explore spatially explicit management
strategies, eg. habitat restoration or predator control in particular places. We describe a new individual-
based, spatially explicit PVA model that integrates with the Environmental Systems Research Institute’s
(ESRI) ArcView® and ArcInfo® GIS software. Environmental stochasticity is simulated in this model using
normal or log-normal deviate random number generators. The model allows the user to choose from a variety
of effects that environmental stochasticity and catastrophes have on fecundity and survival. The model
simulates both sexes and allows for the Allee effect. This work is still in progress. We discuss the operation
of this model and using preliminary data illustrate its application with a threatened species, the Yellow-footed
Rock-wallaby (Petrogale xanthopus).
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1. INTRODUCTION

Population Viability Analysis (PVA) is a Monte
Carlo simulation modelling tool for assessing the
probability that a species will become extinct in a
particular region over a specific period
[Possingham, 1991]. This involves randomly
sampling  demographic and environmental
processes from defined probability distributions
and analysing their cumulative effects over time
[Lacy, 1993].

Many PVA software packages including ALEX,
[Possingham and Davies, 1995], RAMAS/GIS
[Akcakaya, 1994] and Vortex [Lacy, 1993] have
been used to assess the threat of species extinction
in a range of applications including forest resource
management [Lindenmayer, 1996] and
reintroduction/translocation strategies
[Lindenmayer, 1994; Southgate and Possingham,
1995].

Our motivation for producing an alternative PVA
model is threefold. Firstly, we require a seamless
and robust interface between the GIS and the PVA
simulation engine. This enables the user to more
easily alter landscapes and initiate the PVA tool

Given that species interact with their environment
in space and time, PVA models should be
explicitly spatial.  Spatially explicit models

combine population models with representations of
the landscape [Wiegand et al., 1998]. PVA models
also incorporate stochasticity [Burgman et al.,
1993].  For example, small populations are
particularly susceptible to chance events [Boyce,
1992; Lacy, 1993] and if the causes of decline are
removed, a small population may still become
extinct through demographic stochasticity [Shaffer,
1981; Soulé, 1987].

rather than importing new landscapes with every
simulation. Secondly, this model is individual-
based and models both sexes which is better suited
for simulating small populations where the distance
between potential breeding partners may be too
great [Allee, 1949]. Finally, the model simulates
some of the unique environmental characteristics
of semi-arid environments including highly skewed
rainfall distributions.
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2. MODEL OVERVIEW

The PVA model we described here has been
written in C++ and Avenue® as an extension to the
Environmental Systems Research Institute (ESRI)
ArcView® 3.2 Geographical Information System
(GIS).

We divide the landscape into a regular grid of
cells. Each cell holds a static habitat index, which
represents the maximum carrying capacity in that
cell. We separately model the demographic
response of a species to changing environmental
conditions by using a environmental variable
drawn from a statistical distribution which relates
resource availability at time ¢ to survival and
fecundity.

The model repeatedly steps through an annual
cycle of chance environmental, dispersal and
demographic events for a specified time period.
The model then repeats the simulation and records
the extinction and occupancy data at the end of
each period.

2.1 Demographic Structure

The model is individual-based. This allows us to
follow the fate of individuals throughout their
lifetime. Both sexes are modelled using three age
classes. Each age-class has a pre-defined survival
probability and fecundity probability (females).

Modelling both sexes allows the user to specify the
spatial proximity required between mating partners
for breeding to occur. This is important for small
populations where a lack of mating partners can
contribute to a decline in the population [Allee et
al., 1949]. The mating system is polygamous.

Demographic stochasticity includes the chance
fluctuations in survival, fecundity and sex
determination. Chance birth and death events are
simulated using a binomial pseudo-random variate

generator. The number of offspring b, () born in

a particular time step is drawn from a binomial
distribution where:

b=~ Binomial( fix0)*,m(x, t)) ¢))

Here f;(x,t) is the number of potential breeding
females of age class x in cell i at time #; m; (x,¢t) is

the fecundity probability for that age class at time ¢
and [/ is the maximum number of offspring per
female in each time step.

The number of animals in a particular age/sex class
x (including new offspring in class zero) that
survive to the next age/sex class x+1 for grid cell i
from time t to #+1, is given by:

n(x+Lt+1l)= ~ Binomial(ni (x,0),s,(x, t)) )

where, n;(x,t) is the number of animals in a

particular sex/age class x for grid cell i at time ¢
and s;(x,f)is the survival probability for that

sex/age class. The binomial generator uses the ‘n’
Bernoulli  trial  algorithm  described by
Kachitvichyanukul and Schmeiser [1988]. This
algorithm is also used to draw the sex of each
offspring for a given sex ratio.

22 Environmental Stochasticity

The fecundity and survival probabilities, m;(x,?)
and s;(x,7) in Equations 1 and 2 vary annually for

a variety of reasons ~ changing rainfall,
temperature or key resources. This is described as
environmental stochasticity.

The temporal distribution of rainfall and resources
in semi-arid environments tend to be highly
skewed [McCallum, 1994], hence environmental
stochasticity in this model is simulated by sampling
an “environmental variable” from a log-normal
distribution in each time step for each cell.

The mean environmental variable and variance
may be entered as two global parameters or
alternatively selected as raster grids depicting
changing environmental means and variances over
a landscape. The latter option enables us to model
meta-populations, which are distributed over a
range of environmental conditions.

The following logistic functions [from McCallum,
1994] are used to link survival and fecundity
probabilities to the generated environmental
variates.

si(x,1) = S(x)( exp(as +bsui(t)) J 3)

1+ exp(as + bsui(t))

mi(x,t)=M(x)[ expla +b7uit0) ] @)

1+ exp(af + bfu,-(t))

Here u;(z) is the environmental variable in cell i
at time step #; S(x)and M (x)are the maximum
attainable survival and fecundity probabilities for a
sex/age class X; s;(x,t)and m;(x,t)are the
derived survival and fecundity probabilities for a
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sex/age class x in cell i and time step ¢ and ag, by,

agand byare fixed parameters.

When environmental variates are drawn from a
global mean and variance, a correlation coefficient
‘c’ can be used to experiment with different levels
of inter-cell environmental correlation.

E; = cE, + sqrt(1-c)G; )

Here E; is the environmental variate at cell i, E g

is a global variate generated from the global mean
and variance and G; is a grid cell environmental

variate separately generated from the global mean
and variance. Equation 5 does not allow for spatial
correlation between cells.

Density dependence is invoked by truncating the
population (starting with younger individuals) at
the end of each time step to the maximum carrying
capacity defined as a multiple of a habitat quality
variable in each grid cell.

23 Catastrophes

We define catastrophes as extreme environmental
events such as fire or prolonged drought, which
severely lower survival and fecundity. A more
recent version of this model allows for catastrophes
that affect either a proportion of the population
(local catastrophes) or the entire population (global
catastrophes). The advantage of separating
catastrophes from unusual environmental events is
our ability to stipulate the probability (or
frequency) of a global catastrophe, its maximum
duration and net effect on carrying capacity,
survival and fecundity. The frequency of
catastrophes is drawn from a binomial variate
generator using a specified probability. The
duration of the catastrophe (in years) is drawn from
a uniform random number generator up to a
specified maximum duration. The user also
specifies an environmental modifier, which is a
fraction multiplied by the environmental variable
and the carrying capacities of each cell when a
catastrophe occurs in that year.

24 Movement

Population models that incorporate landscape
characteristics allow us to explore dispersal
processes [Pulliam et al., 1992]. Only movement
related to natal dispersal has been incorporated in
this model. The model accommodates active and
passive dispersal strategies. An active dispersal
strategy is when the individual seeks suitable
habitat for survival and reproductive success
[Pulliam, 1996] whereas a passive dispersal

strategy is random. The probability of dispersal
also decays with distance. The following negative
exponential distance probability function has been
adapted from Okubo and Levin [1989].

fx)y=e"* ()

Here f(x)is the probability density of dispersal

for distance x. Parameter ‘a’ is the inverse of the
average dispersal distance specific to each sex.
The dispersal algorithm simulates each dispersing
individual moving from its natal (source) cell
through the landscape. The disperser moves
through the landscape by stopping at each cell and
choosing the next cell in which to move according
to a selection algorithm (Equation 7). An active
disperser would choose to move to a surrounding
cell with the highest habitat score. The user
specifies n Bernoulli trials in Equation 7 as an
indicator of search effort. This algorithm therefore
incorporates an element of stochasticity in cell
selection and is analogous to an individual
searching the surrounding cells n number of times
before making a decision. If n is zero the
individual will move randomly to any of the
surrounding cells. High values of n indicate a

greater search effort. Separate binomial variates h;
are drawn for each surrounding cell j using the
surrounding cell’s habitat score as the probability
for n Bernoulli trials. The cell with the highest

integer value of 4; is selected for the next move.

h. = ~ Binomial (n,pj) Q)

J
Here p;j is the habitat quality of the i

surrounding cell. The individual cannot move
back into the cell from where it last moved.

For each move, a random distance is drawn from
the distribution in Equation 6. If the Cartesian
distance the individual has travelled from the
origin cell reaches a variate distance drawn from
this distribution, the individual ceases to move
further. Destination cells are also tested to see if
existing occupants have reached carrying capacity.
All moves by the individual to the final destination
occur within one time step.

3. MODELLING DISPERSAL
STRATEGIES

Spatially explicit Population Viability Analysis
allows us to explore dispersal strategies in relation
to landscape. By way example we use data
collected in this study for the Yellow-footed Rock-
wallaby (Petrogale xanthopus). Field data
collection is still in progress.
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31 Demographic Parameters

P. xanthopus lives in isolated populations in semi-
arid rangelands of south-eastern Australia.
Predation and habitat degradation from native and
introduced herbivores have caused a decline in P.
xanthopus numbers in the last 100 years.
Demographic data have been collected from mark
and re-capture sampling resulting in 156 captures
over seven six-monthly trap seasons at the three
sites. Trapping was carried out between March
1998 and February 2001 and is still work in
progress. Sites 1 & 2 are 4km apart in the Flinders
Ranges National Park S.A and site 3 is located in
pastoral country approximately 24km from Site 2.
All sites fall along a linear geological formation.
Preliminary data analysis of mark and re-capture
data indicates that the average adult survival and
trapability is not significantly different between

sites {P=0.063, 72 =8.92(4)} or sexes {P= 0.083,

;{2 =4.978(2)}. Of course and non-significant

result does not mean there is no difference...
Could the differences be large? The pooled
average adult survival was calculated to be 0.88.
Adult survival was also found to best link to the
previous 12 months of rainfall (using Equation 3, a
= -2.83, b = 0.033, R>=0.82, 4 trap periods, 23
adults) although few data are available for this to
be reliable. Juvenile survival was difficult to
measure because few individuals were trapped
after being marked as pouch young and the fate of
these individuals is unknown. Using crude
estimates, juvenile survival at sites 1 & 2 (with fox
control) could be as high as 65% and at site 3 (with
no fox control), 20%. Fecundity data did not link
as well to rainfall (using Equation 4, a = 0.064, b =
0.009, R*=0.37, 4 trap periods, 31 females).

3.2 Dispersal Parameters

There is still little information available on the
long term and long distance movement of P.
xanthopus. Microsatellite and mitochondrial DNA
data collected at sites 1, 2, and 3 are currently
being analysed by Macquarie University (NSW).
Preliminary findings using an assignment test
suggest that approximately 4 males (n= 19 females,
n=22 males) have moved between sites 1 and 2
(4km) with no movement detected between sites 2
and 3 (24km) in ecological time [Eldridge, pers
comm, 2001]. :

3.3 Habitat

Habitat data have been collected from field surveys
and compared with aerial survey data of P.
xanthopus collected by the Department for
Environmental and Heritage (S.A.). Using this
information, a habitat index for 1 kilometre grid
cells (Figure 1) has been derived using a technique
known as Geographically Weighted Regression
[Fotheringham et al., 1998].

4. RESULTS

Despite the scarcity of data, the application of
PVA modelling can still clarify our understanding
of the ecological processes that effect species
persistence and extinction. Sensitivity analysis
involves varying parameter estimates and analysing
the resulting extinction probabilities [Possingham
et al,, 2001]. Parameter uncertainty includes
variations in process and errors in observation and
sensitivity analysis can improve our understanding
of how these uncertainties might affect model
performance. An exhaustive sensitivity analysis of
all model parameters has not yet been carried out.

4.1 Understanding Dispersal Strategies

To illustrate the potential of spatially explicit PVA
modelling, we describe a few dispersal simulation
experiments. Johnson [1990] hypothesised that
dispersal is male biased in macropods and although
the genetic data sampled in this study does not
negate this hypothesis there are too few data to
substantiate any claims. Figure 2 shows the results
of 500 simulations for a range of dispersal
parameters. An active dispersal strategy has been
selected in this example (n= 10 in Equation 7), and
although little or no data is known about the way
this species selects habitat, other experiments using
a more passive strategy will be trialed at a later
stage for comparison. In Figure 2, high average
male and female dispersal distances at line (a)
markedly increase the probability of extinction.
Conversely, low female dispersal distances for a
varying range of average male dispersal distances
(line (c) in Figure 2) appear to exhibit a reduction
in extinction probabilities. The turning points at
approximately .2000m for lines (a) & (c) are
interesting and worth further investigation but may
be an artefact of the cell size (1000m).

The effect of both males and females dispersing
larger distances may therefore decrease the chance
of males and females breeding hence increase the
probability of extinction.
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Figure 2. Average dispersal distance verses
probability of extinction in 100 years; 500
simulations; adult survival = 0.88, Juvenile

Survival = 0.4. Line (a) both male & female

dispersal parameters vary; line (b) average male
dispersal fixed at 1500 metres and female dispersal
varying; line (c) average female dispersal fixed at
1500 metres and male dispersal varying. Similar
experiments were conducted for cells with an 80%
correlation between environmental variables and a
range of other juvenile survival rates. An ‘Allee’
effect parameter was set so that female breeds only
if a male is present in the same cell or a
surrounding cell (including diagonals).

4.2  Model Limitations

The approach we have described does not include
a genetic sub-model and the effect of limited
dispersal would lead to genetic isolation and in-
breeding, that may ultimately lead to decline. The
inclusion of a genetic sub-model may also provide

some insights about the importance of different
dispersal strategies for gene flow in different
landscape structures.

The survival parameters we used in equation 3
apply to all age classes because only a small
amount of data was available to measure the
response of juvenile survival to environmental
stochasticity however, this could severely affect
our predictions and further field work is required.
Finally, the dispersal decay function does not
penalise the individual’s chances of survival with
distance and a future version of this model will
consider survival associated with dispersal.
Future modelling will also need to include all
parameters in the sensitivity analysis. Aerial
survey data collected by the Department for
Environment and Heritage (S.A.), will also be used
to investigate other model inadequacies.

5. CONCLUSIONS

While PVA are primarily used to model the risk of
extinction, it is also useful as a tool to explore
hypotheses and help clarify ecological processes
when data may be scarce. Spatially explicit PVA
enables us to explore the movement and dispersal
strategies in relation to the landscape and
sensitivity analysis that focuses on dispersal also
provides us with a better understanding of the
importance of different dispersal strategies and
accordingly directs future data collection efforts.

These results are only preliminary but lend support
to the hypothesis that dispersal may be male
biased. @ While this is a commonly accepted
paradigm for most macropods, few data have been
available to support this hypothesis for P.
xanthopus. Illustrating this through model
simulation is not an attempt to prove this
hypothesis but through model simulation we may
be able to gain further insights to the process that
drive these strategies.

This work is still in progress and further work will
test a range of dispersal strategies different habitat
types and catastrophes frequencies. This may shed
some light on the role of dispersal in local
population rescue.
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